首页> 外文OA文献 >BIDCHIPS: bias decomposition and removal from ChIP-seq data clarifies true binding signal and its functional correlates
【2h】

BIDCHIPS: bias decomposition and removal from ChIP-seq data clarifies true binding signal and its functional correlates

机译:BIDCHIPS:偏差分解和从ChIP-seq数据中删除可阐明真实的结合信号及其功能相关性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Abstract Background Unraveling transcriptional regulatory networks is a central problem in molecular biology and, in this quest, chromatin immunoprecipitation and sequencing (ChIP-seq) technology has given us the unprecedented ability to identify sites of protein-DNA binding and histone modification genome wide. However, multiple systemic and procedural biases hinder harnessing the full potential of this technology. Previous studies have addressed this problem, but a thorough characterization of different, interacting biases on ChIP-seq signals is still lacking. Results Here, we present a novel framework where the genome-wide ChIP-seq signal is viewed as being quantifiably influenced by different, measurable sources of bias, which can then be computationally subtracted away. We use a compendium of 123 human ENCODE ChIP-seq datasets to build regression models that tell us how much of a ChIP-seq signal can be attributed to mappability, GC-content, chromatin accessibility, and factors represented in input DNA and IgG controls. When we use the model to separate out these non-binding influences from the ChIP-seq signal, we obtain a purified signal that associates better to TF-DNA-binding motifs than do other measures of peak significance. We also carry out a multiscale analysis that reveals how ChIP-seq signal biases differ across different scales. Finally, we investigate previously reported associations between gene expression and ChIP-seq signals at transcription start sites. We show that our model can be used to discriminate ChIP-seq signals that are truly related to gene expression from those that are merely correlated by virtue of bias—in particular, chromatin accessibility bias, which shows up in ChIP-seq signals and also relates to gene expression. Conclusions Our study provides new insights into the behavior of ChIP-seq signal biases and proposes a novel mitigation framework that improves results compared to existing techniques. With ChIP-seq now being the central technology for studying transcriptional regulation, it is most crucial to accurately characterize, quantify, and adjust for the genome-wide effects of biases affecting ChIP-seq. Our study also emphasizes that properly accounting for confounders in ChIP-seq data is of paramount importance for obtaining biologically accurate insights into the workings of the complex regulatory mechanisms in living organisms. R and MATLAB packages implementing the framework can be obtained from http://www.perkinslab.ca/Software.html .
机译:摘要背景拆解转录调控网络是分子生物学中的一个中心问题,在这一探索中,染色质免疫沉淀和测序(ChIP-seq)技术为我们提供了前所未有的能力,可以在整个蛋白质-DNA结合位点和组蛋白修饰基因组中进行鉴定。但是,多种系统性和程序性偏差阻碍了该技术的全部潜力的利用。先前的研究已经解决了这个问题,但是仍然缺乏对ChIP-seq信号的不同相互作用偏倚的全面表征。结果在这里,我们提出了一个新颖的框架,其中全基因组ChIP-seq信号被视为可量化地受到不同,可测量偏差来源的影响,然后可以通过计算将其减去。我们使用123个人类ENCODE ChIP-seq数据集的摘要来建立回归模型,该模型告诉我们多少ChIP-seq信号可归因于可映射性,GC含量,染色质可及性以及输入DNA和IgG对照中表示的因素。当我们使用该模型从ChIP-seq信号中分离出这些非结合影响时,我们获得的纯化信号比其他具有峰值显着性的方法与TF-DNA结合基序更好地关联。我们还进行了多尺度分析,揭示了ChIP-seq信号偏差在不同尺度上如何不同。最后,我们调查了先前报道的基因表达与ChIP-seq信号在转录起始位点之间的关联。我们证明了我们的模型可用于将与基因表达真正相关的ChIP-seq信号与仅通过偏倚(尤其是染色质可及性偏倚)相关的ChIP-seq信号区别开来,而ChIP-seq信号中也显示基因表达。结论我们的研究为ChIP-seq信号偏差的行为提供了新见解,并提出了一种新颖的缓解框架,与现有技术相比,该框架可改善结果。现在,ChIP-seq已成为研究转录调控的核心技术,因此准确表征,定量和调整影响ChIP-seq的基因组范围的影响至关重要。我们的研究还强调,正确地计算ChIP-seq数据中的混杂因素对于获得生物学上对活生物体复杂调控机制工作的准确见解至关重要。可以从http://www.perkinslab.ca/Software.html获得实现该框架的R和MATLAB软件包。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号